Scholastic Aptitude Test - Mathematics - Trigonometry

Question - 1

If √3 tanθ=3 Sinθ, then value of Sin2θ-Cos2θ is

  • A \(\frac{1}{\sqrt{3}}\)
  • B \(\frac{1}{\sqrt{2}}\)
  • C \(\frac{1}{3}\)
  • D \(\frac{1}{4}\)

Question - 2

If sin170=\(\frac{x}{y}\), then the value of Sec170 - Sin730 is

  • A \(\frac{y^{2}-x^{2}}{xy}\)
  • B \(\frac{x^{2}}{\sqrt{y^{2}-x^{2}}}\)
  • C \(\frac{x^{2}}{y\sqrt{y^{2}+x^{2}}}\)
  • D \(\frac{x^{2}}{y\sqrt{y^{2}-x^{2}}}\)

Question - 3

If θ\(\frac{\pi}{2}\) and sec x=cosec y, then the value of sin(x+y) is

  • A 0
  • B 1
  • C \(\frac{1}{3}\)
  • D \(\frac{1}{\sqrt{3}}\)

Question - 4

The simplified value of (SecA- CosA)2 +(CosecA - SinA)2 - ( cot A - tanA)2 is

  • A 0
  • B \(\frac{1}{2}\)
  • C 1
  • D 2

Question - 5

The value of sin210+sin250+sin290.....+sin2890 is

  • A 11\(\frac{1}{2}\)
  • B 11√2
  • C 11
  • D \(\frac{11}{\sqrt{2}}\)

Question - 6

If cosec 390=x, the value of \(\frac { 1 }{ { cos }^{ 2 }51° } +{ sin }^{ 2 }39°+{ tan }^{ 2 }51°-\frac { 1 }{ { sin }^{ 2 }51°{ sec }^{ 2 }39° } \)is

  • A \(\sqrt{x^{2}-1}\)
  • B \(\sqrt{1-x^{2}}\)
  • C x2-1
  • D 1-x2

Question - 7

If sinθ+cosecθ=2, then value of sin100θ+cosec100θ is

  • A 1
  • B 2
  • C 3
  • D 100

Question - 8

If x, y are acute angles, 0<x+y<900 and Siri(2x - 200) = Cos(2y+ 200). value of Tan(x+y) is

  • A \(\frac{1}{\sqrt{3}}\)
  • B \(\frac{\sqrt{3}}{2}\)
  • C √3
  • D 1

Question - 9

The value of Sin15° is

  • A \(\frac{\sqrt{3}+1}{2\sqrt{2}}\)
  • B \(\frac{\sqrt{3}-1}{2\sqrt{2}}\)
  • C \(\frac{\sqrt{\sqrt{2}-\sqrt{3}}}{2}\)
  • D \(\frac{\sqrt{\sqrt{2}+\sqrt{3}}}{2}\)

Question - 10

If φ and θ are complementary angles. then:

  • A sinθ=sinφ
  • B cosθ=cosφ
  • C tanθ=tanφ
  • D secθ=cosecφ
Facebook
Twitter
Google+
Email