

Motion of System of Particles and Rigid Body Important Questions With Answers

NEET Physics 2023

1. The moment of inertia of a thin uniform rod of mass M and length L about an axis passing through its midpoint and perpendicular to its length is I_{0}, Its moment of inertia about an axis passing through one of its ends and perpendicular to its length is:
a) $\mathrm{I}_{0}+\left(\mathrm{ML}^{2}\right)$
b) $\mathrm{I}_{0}+\left(\mathrm{ML}^{2} / 2\right)$
c) $\mathrm{I}_{0}+\left(\mathrm{ML}^{2} / 4\right)$
d) $\mathrm{I}_{0}+\left(2 \mathrm{ML}^{2}\right)$

Solution:-

By the theorem of parallel axes, the moment of inertia of a body about any axis is equal to the sum of the moment of inertia about a parallel axis through the centre of mass and Ma^{2}, where M is the mass of the body and a is the separation between the two axes.
Therefore, the moment of inertia of the rod about an axis passing through one of its ends and perpendicular to its length is
$I=I_{0}+M(L / 2)^{2}$
$=\mathrm{I}_{0}+\mathrm{ML}^{2} / 4$
2. A uniform rod of length 1 m and mass 4 kg is supported on two knife-edges placed 10 cm from each end. A 60 N weight is suspended at 30 em from one end. The reactions at the knife edges is :
a) $60 \mathrm{~N}, 40 \mathrm{~N}$
b) $75 \mathrm{~N}, 25 \mathrm{~N}$
c) $65 \mathrm{~N}, 35 \mathrm{~N}$
d) $55 \mathrm{~N}, 45 \mathrm{~N}$

Solution : -

$A B$ is the rod. K_{1} and K_{2} are the two knife edges.
Since the rod is uniform, therefore its weight acts at its centre of gravity G.
Let R1 and R2 be reactions at the knife edges.
For the translational equilibrium of the rod,
$R_{1}+R_{2}-60 N-40 N=0$
$R_{1}+R_{2}=60 \mathrm{~N}+40 \mathrm{~N}=100 \mathrm{~N} \ldots$ (i)
For the rotational equilibrium, taking moments about G , we get
$-\mathrm{R}_{1}(40)+60(20)+\mathrm{R}_{2}(40)=0$
$R_{1}-R_{2}=\frac{1200}{40}=30 N$
Adding (i) and (ii), we get $2 \mathrm{R}_{1}=130 \mathrm{~N}$ or $\mathrm{R}_{1}=65 \mathrm{~N}$ Substituting this value in Eq. (i), we get $R_{2}=35 \mathrm{~N}$
3. Two bodies of mass 1 kg and 3 kg have position vectors $\hat{i}+2 \hat{j}+\hat{k}$ and $-3 \hat{i}-2 \hat{j}+\hat{k}$ respectively. The centre of mass of this system has a position vector
a) $-2 \hat{i}-\hat{j}+\hat{k}$
b) $2 \hat{i}-\hat{j}-2 \hat{k}$
c) $-\hat{i}+\hat{j}+\hat{k}$
d) $-2 \hat{i}+2 \hat{k}$

Solution:-
The position vector of the centre of mass of two particle system is given by
$\vec{R}=\frac{m_{1} \vec{R}_{1}+m_{2} \vec{R}_{2}}{\left(m_{1}+m_{2}\right)}$
$=\frac{1}{4}[-8 \hat{i}-4 \hat{j}+4 \hat{k}]=-2 \hat{i}-\hat{j}+\hat{k}$
4. The force $7 \hat{i}+3 \hat{j}-5 \hat{k}$ acts on a particle whose position vector is $\hat{i}-\hat{j}+\hat{k}$. What is the torque of a given force about the origin?
a) $2 \hat{i}+12 \hat{j}+10 \hat{k}$
b) $2 \hat{i}+10 \hat{j}+12 \hat{k}$
c) $2 \hat{i}+10 \hat{j}+10 \hat{k}$
d) $10 \hat{i}+2 \hat{j}+\hat{k}$

Solution :-
Here, $\vec{r}=\hat{i}-\hat{j}+\hat{k}, \vec{F}=7 \hat{i}+3 \hat{j}-5 \hat{k}$
Torque, $\vec{\tau}=\vec{r} \times \vec{F}$
$\vec{\tau}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 7 & 3 & -5\end{array}\right|=\hat{i}(5-3)+\hat{j}(7-(-5))+\hat{k}(3-(-7))$
or $\vec{\tau}=2 \hat{i}+12 \hat{j}+10 \hat{k}$
5. A particle is projected at time $t=0$ from a point P on the ground with a speed v_{o}, at an angle of 45° to the horizontal The angular momentum of the particle about P at time $t=v_{0} / g$ is
a) $\frac{m v_{0}^{3}}{2 \sqrt{2} g}$
b) $\frac{m v_{0}^{3}}{\sqrt{2} g}$
c) $\frac{3 m v_{0}^{3}}{\sqrt{2} g}$
d) $\frac{\sqrt{2} m v_{0}^{3}}{g}$

Solution :

Let $\mathrm{L}=$ angular momentum of the particle
about P at time $t=v o / g$
At time $\mathrm{t}=\mathrm{vo} / \mathrm{g}$:
Let $P_{x}=x$-component of momentum of particle
$v_{x}=x$-component of velocity of particle
$\mathrm{x}=$ displacement along x -axis.
Let $\mathrm{P}_{\mathrm{y}}, \mathrm{V}_{\mathrm{y}}$ and y denote the quantities along y -axis
Angular momentum, $L=x P_{y}-y P_{x}$
or $L=x\left(m v_{y}\right)-y\left(m v_{x}\right)$ or $L=m\left[x v_{y}-y v_{x}\right]$
To find V_{x} and V_{x} :
$\mathrm{V}_{\mathrm{x}}=$ Horizontal velocity of the projectile
or $v_{x}=v_{0} \cos 45^{0}=\frac{v_{0}}{\sqrt{2}}$
It remains constant all along.
$\mathrm{V}_{\mathrm{y}}=$ vertical velocity of particle
or $v_{y}=\left(v_{0} \sin 45^{0}\right)-g \times\left(\frac{v_{0}}{g}\right) \quad[\therefore v=u+a t]$
or $v_{y}=\left(\frac{v_{0}}{\sqrt{2}}-v_{0}\right) \quad \ldots .(i i i)$
To find x and y :
$\mathrm{x}=\mathrm{V}_{\mathrm{x}} X$ time
or $x=\frac{v_{0}}{\sqrt{2}} \times \frac{v_{0}}{g}=\frac{v_{0}^{2}}{\sqrt{2 g}} \therefore x=\frac{v_{0}^{2}}{\sqrt{2 g}}$

$y=v_{0} \sin \theta t-\frac{g t^{2}}{2}$
$y=\frac{v_{0}}{\sqrt{2}} \times \frac{v_{0}}{g}-\frac{g}{2}\left(\frac{v_{0}}{g}\right)^{2}$
or $y=\left(\frac{v_{0}^{2}}{\sqrt{2 g}}-\frac{v_{0}^{2}}{2 g}\right)$
\therefore Substitute (ii), (iii), (iv) and (v) in (i)
$L=m\left[\frac{v_{0}^{2}}{\sqrt{2 g}} \times\left(\frac{v_{0}}{\sqrt{2}}-v_{0}\right)-\left(\frac{v_{0}^{2}}{\sqrt{2 g}}-\frac{v_{0}^{2}}{2 g}\right) \frac{v_{0}}{\sqrt{2}}\right]$
or $L=\frac{m v_{0}^{3}}{g}\left[\left(\frac{1}{2}-\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)\right]$
or $L=\frac{m v_{0}^{3}}{g} \times\left(\frac{-1}{2 \sqrt{2}}\right)=\frac{-m v_{0}^{3}}{2 \sqrt{2 g}}$
L is \perp to plane of motion and is directed away from the reader i.e., along -ve z direction.
6. Two particles which are initially at rest, move towards each other under the action of their internal attraction. If their speeds are v and $2 v$ at any instant, then the speed of centre of mass of the system will be \qquad .
a) 2 v
b) zero
c) 1.5
d) v

Solution: -

The centre of mass remains at rest, when no external force acts on a system of particles. So, speed of centre of mass is zero.
7. Which of the following is the correct relation between linear velocity \vec{v} and angular velocity \vec{w} of a particle?
a) $\vec{v}=\vec{r} \times \vec{w}$
b) $\vec{v}=\vec{w} \times \vec{r}$
c) $\vec{w}=\vec{r} \times \vec{v}$
d) $\vec{w}=\vec{v} \times \vec{r}$

Solution : -

The relation between linear velocity v and angular velocity \vec{w} is $\vec{v}=\vec{w} \times \vec{r}$
8. Two stones of masses m and $2 m$ are whirled in horizontal circles, the heavier one in a radius $r / 2$ and the lighter one in radius r. The tangential speed of lighter stone is n times that of the value of heavier stone when they experience same centripetal forces. The value of n is :
a) 1
b) 2
c) 3
d) 4

Solution:-

The two stones of masses m and $2 m$ are whirled in horizontal circles where heavier stone is of radius $r / 2$ and lighter stone is of radius r.

It is noted that as lighter stone is n times that of value of heavier stone, so when similar centripetal forces
experience, then
$\left(F_{c}\right)_{\text {heavier }}=\left(F_{c}\right)_{\text {lighter }}$
$2 \mathrm{~m}(\mathrm{v})^{2} /(\mathrm{r} / 2)=\mathrm{m}(\mathrm{nv})^{2} / \mathrm{r}$
Now $n^{2}=4$
$\mathrm{n}=2$
9. A boy is pushing a ring of mass 2 kg and radius 0.5 m with a stick as shown in the figure. The stick applies a force of 2 N on the ring and rolls it without slipping with an acceleration of $0.3 \mathrm{~m} / \mathrm{s}^{2}$. The coefficient of friction between the ground and the ring is large enough that rolling always occurs. Then the coefficient of friction between the stick and the ring is :

a) 0.4
b) 0.8
c) 0.2
d) 0.5

Solution : -

As 2- $f_{1}=\mathrm{Ma}$
$f_{1}=2-\mathrm{Ma}=2-2 \times 0.3=1.4 \mathrm{~N}$
Taking torque about C
$f_{1} R-f_{2} R=I_{C} \alpha$
$\left(f_{1}-f_{2}\right) R=M R^{2} \frac{a}{R} \quad\left(\therefore \alpha=\frac{a}{R}\right)$
$f_{1}-f_{2}=\mathrm{Ma}$
$f_{2}=f_{1}-\mathrm{Ma}=1.4-2 \times 0.3=0.8 \mathrm{~N}$
$f_{2}=2 \mu$
$\mu=\frac{0.8}{2}=0.4$
10. A solid cylinder of mass 20 kg and radius 20 cm rotates about its axis with an angular speed of $100 \mathrm{rad} \mathrm{s}^{-1}$. The angular momentum of the cylinder about its axis is
a) 40 J s
b) 400 J s
c) 20 J s
d) 200 J s

Solution : -

Here, $M=20 \mathrm{~kg}$
$\mathrm{R}=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}, \mathrm{~W}=100 \mathrm{rad} \mathrm{s}^{-1}$
Moment of inertia of the solid cylinder about its axis is
$I=\frac{M R^{2}}{2}=\frac{(20 \mathrm{Kg})\left(20 \times 10^{-2} \mathrm{~m}\right)^{2}}{2}=0.4 \mathrm{~kg} \quad \mathrm{~m}^{2}$
Angular momentum of the cylinder about its axis is
$\mathrm{L}=I w=\left(0.4 \mathrm{~kg} \mathrm{~m}^{2}\right)\left(100 \mathrm{rad} \mathrm{s}^{-1}\right)=40 \mathrm{~J} \mathrm{~s}$
11. Two racing cars of masses m and 4 m are moving in circles of radii r and 2 r respectively. If their speeds are such that each makes a complete circle in the same time, then the ratio of the angular speeds of the first to the second car is \qquad
a) 4: 1
b) 2: 1
c) 1:1
d) $8: 1$

Solution : -

As both cars take the same time to'complete the circle and as $\omega=\frac{2 \pi}{t}$, therefore ratio of angular speeds of the cars will be 1: 1.
12. To maintain a rotor at a uniform angular speed of $100 \mathrm{rad} \mathrm{s}^{-1}$, an engine needs to transmit torque of 100 N m . The power of the engine is
a) $\mathbf{1 0} \mathrm{kW}$
b) 100 kW
c) 10 MW
d) 100 MW

Solution : -

Here, $\mathrm{w}=100 \mathrm{rad} \mathrm{s}^{-1}, \tau=100 \mathrm{~N} \mathrm{~m}$
As $\mathrm{P}=\tau w$
$\therefore P=(100 \mathrm{Nm})\left(100 \mathrm{rad} \mathrm{s}^{-1}\right)=10 \times 10^{3} \mathrm{~W}=10 \mathrm{~kW}$
13. A spherical ball rolls on a table without slipping. Then, the fraction of its total energy associated with rotation is
a) $\frac{2}{5}$
b) $\frac{2}{7}$
c) $\frac{3}{5}$
d) $\frac{3}{7}$

Solution :-

Concept The total kinetic energy of the ball rolling on a table without slipping is equal to its rotational kinetic energy and translational kinetic energy.
Total kinetic energy of spherical ball is given by $\mathrm{K}=$ Kinetic energy rotational $\left(K_{\text {rev }}\right)+$ Kinetic energy translational ($K_{\text {erans }}$)
$=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$
For sphere, moment of inertia about its diameter
$I=\frac{2}{5} m r^{2}$
$\therefore K=\frac{1}{2}\left(\frac{2}{5} m r^{2}\right) \omega^{2}+\frac{1}{2} m v^{2}$
$=\frac{1}{5} m r^{2} \omega^{2}+\frac{1}{2} m v^{2}$
$=\frac{1}{5} m v^{2}+\frac{1}{2} m v^{2}($ as $v=r \omega)$
$=\frac{7}{10} m v^{2}$
$\therefore \frac{K_{r}}{K}=\frac{\frac{1}{5} m v^{2}}{\frac{7}{10} m v^{2}}=\frac{2}{7}$
14. A wheel has angular acceleration of $3.0 \mathrm{rad} / \mathrm{sec}^{2}$ and an initial angular speed of $2.00 \mathrm{rad} / \mathrm{sec}$. In a time of 2 sec it has rotated through an angle (in radian) of \qquad
a) 10
b) 4
c) 12
d) 6

Solution :-
Since, $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
Where a is angular acceleration, ω_{0} is the initial angular speed.
$\mathrm{t}=2 \mathrm{~s}$
$\theta=2 \times 2+\frac{1}{2} \times 3(2)^{2}=4+6=10 \mathrm{rad}$
15. Assertion: If there are no external forces, the centre of mass of a double star moves like a free particle.

Reason: If we go to the centre of mass frame, then we find that the two stars are moving in a circle about the centre of mass, which is at rest.
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion.
c) If assertion is true but reason is false.
d) If both assertion and reason are false

Solution : -

In our frame of reference, the trajectories of the stars are a combination of
(i) uniform motion in a straight line of the centre of mass and
(ii) circular orbits of the stars about the centre of mass.
16. A disc is rotating with angular velocity \& about its axis. A force \vec{F} acts at a point whose position vector with respect to the axis of rotation is \vec{r}. The power associated with the torque due to the force is given by
a) $(\vec{r} \times \vec{F}) \cdot \vec{w}$
b) $(\vec{r} \times \vec{F}) \times \vec{w}$
c) $\vec{r} .(\vec{F} \times \vec{w})$
d) $\vec{r} \times(\vec{F} \cdot \vec{w})$

Solution:-

Torque, $\vec{\tau}=\vec{r} \times \vec{F}$
\therefore Power associated with the torque is
$p=\vec{\tau} \cdot \vec{w}=(\vec{r} \times \vec{F}) . \vec{w}$
17. A ballet dancer, dancing on a smooth floor is spinning about a vertical axis with her arms folded with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$. When she stretches her arms fully, the spinning speed decrease as $10 \mathrm{rad} / \mathrm{s}$, If I is the initial moment of inertia of the dancer, the new moment of inertia is
a) 21
b) $3 /$
c) $1 / 2$
d) $1 / 3$

Solution : -

Here, angular momentum is conserved.
Initial angular momentum = Final angular momentum
$I \times 20=I$ x 10 , where I ' is new moment of inertia
$\therefore 1 l^{\prime}=21$
18. Two discs are rotating about their axes, normal to the discs and passing through the centres of the discs. Disc D_{1} has 2 kg mass and 0.2 m radius and initial angular velocity of $50 \mathrm{rads}^{-1}$. Disc D_{2} has 4 kg mass, 0.1 m radius and initial angular velocity of $200 \mathrm{rads}^{-1}$. The two discs are brought in contact face to face, with their axes of rotation coincident. The final angular velocity (in $\operatorname{rad} s^{-1}$) of the system is \qquad
a) 40
b) 60
c) 100
d) 120

Solution:-

We have,
$m_{1}=2 \mathrm{~kg} \quad m_{2}=4 \mathrm{~kg}$
$r_{1}=0.2 \mathrm{~m} \quad r_{2}=0.1 \mathrm{~m}$
$w_{1}=50 \mathrm{rad}^{-1} \quad w_{2}=200 \mathrm{rad}^{-1}$
As $I_{1} W_{1}=I_{2} W_{2}=$ Constant
$\therefore W_{f}=\frac{I_{1} W_{1}+I_{2} W_{2}}{I_{1}+I_{2}}$
$=\frac{\frac{1}{2} m_{1} r_{1}^{2} w_{1}+\frac{1}{2} m_{2} r_{2}^{2} w_{2}}{\frac{1}{2} m_{1} r^{2}+\frac{1}{2} m_{2} r_{2}^{2}}$
$=\frac{\frac{1}{2} \times 2 \times 0.04 \times 50 \frac{1}{2}+4 \times 0.01 \times 200}{\frac{1}{2} \times 2 \times 0.04+\frac{1}{2} \times 4 \times 0.01}$
$=100 \mathrm{rads}^{-1}$
19. Assertion: A girl sits on a rolling chair, when she stretch her arms horizontally, her speed is reduced.

Reason : Principle of conservation of angular momentum is applicable in this situation.
a) If both assertion and reason are true and reason is the correct explanation of assertion
b) If both assertion and reason are true but reason is not the correct explanation of assertion
c) If assertion is true but reason is false
d) If both assertion and reason are false.

Solution : -

If friction in the rotational mechanism is neglected, there is no external torque about the axis of rotation of the chair and hence $l \omega$ is constant, where 1 is moment of inertia and ω is angular velocity. Stretching the arms increases 1 about the rotation, results in decreasing the angular speed ω. Bringing the arms closer, body has the opposite effect.
20. Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities ω_{1} and ω_{2}. They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is:
a) $\frac{1}{4} I\left(\omega_{1}-\omega_{2}\right)^{2}$
b) $I\left(\omega_{1}-\omega_{2}\right)^{2}$
c) $\frac{1}{8} I\left(\omega_{1}-\omega_{2}\right)^{2}$
d) $\frac{1}{2} I\left(\omega_{1}+\omega_{2}\right)^{2}$

Solution :

According to the problem,
$l \omega_{1}+l \omega_{2}=2 / \omega_{0}$
$\omega_{0}=\left(\omega_{1}+\omega_{2}\right) / 2$
$K_{i}=\frac{1}{2} I\left(\omega_{1}^{2}+\omega_{2}^{2}\right)$
$K_{f}=\frac{1}{4}\left(\omega_{1}+\omega_{2}\right)^{2}$
loss $\Delta K=I\left[\omega_{1}^{2} / 2+\omega_{2}^{2} / 2-\omega_{1}^{2} / 4-\omega_{2}^{2} / 4-2 \omega_{1} \omega_{2} / 4\right]$
$=I\left[\omega_{1}^{2} / 4+\omega_{2}^{2} / 4-2 \omega_{1} \omega_{2} / 4\right]$
$=I / 4\left[\omega_{1}-\omega_{2}\right]^{2}$
21. A round disc of moment of inertia I_{2} about its axis perpendicular to its plane and passing through its centre is placed over another disc of moment of inertia l_{1} rotating with an angular velocity ' ω ' about the same axis. The final angular velocity of the combination of discs is :
a) $I_{2} \omega /\left(I_{1}+I_{2}\right)$
b) ω
c) $I_{1} \omega /\left(I_{1}+I_{2}\right)$
d) $\left(I_{1}+I_{2}\right) \omega / I_{1}$

Solution : -
The initial angular momentum of the system is $I_{1} \omega$ and final angular momentum is $\left(I_{1}+I_{2}\right) \omega^{\prime}$ where
$\omega^{\prime}=$ final angular velocity of combination of discs
On equating the initial and final angular
momentum, we get
$\omega^{\prime}=I_{1} \omega /\left(l_{1}+l_{2}\right)$
22. If a flywheel makes $120 \mathrm{rev} / \mathrm{min}$, then its angular speed will be \qquad
a) $8 \mathrm{p} \mathrm{rad} / \mathrm{s}$
b) $6 \mathrm{prad} / \mathrm{s}$
c) $4 \mathrm{prad} / \mathrm{s}$
d) $2 \mathrm{prad} / \mathrm{s}$

Solution : -

Angular velocity of flywheel is given by
$\omega=2 \mathrm{p} v$
where, n is number of revolutions per second or frequency of revolution
Here, $n=120 \mathrm{rev} / \mathrm{min}$
$\therefore \omega=\frac{2 \pi \times 120}{60}=4 \mathrm{prad} / \mathrm{s}$
23. The moment of inertia of a thin uniform rod of mass M and length L about an axis passing through its midpoint and perpendicular to its length is I_{0}. Its moment of inertia about an axis passing through one of its ends and perpendicular to its length is
a) $I_{0}+M L^{2 / 2}$
b) $I_{0}+M L^{2} / 4$
c) $I_{0}+2 M L^{2}$
d) $I_{0}+M L^{2}$

Solution : -

Applying theorem of parallel axis,
$I=I_{c m}+M d^{2}$
$I=I_{0}+M(L / 2)^{2}=I_{0}+M L^{2} / 4$
24. A homogeneous disc of mass 2 kg and radius 15 cm is rotating about its axis (which is fixed) with an angular velocity of 4 radian $/ \mathrm{see}$ with an angular velocity of $4 \mathrm{radian} / \mathrm{sec}$. The linear momentum of the disc is:
a) $1.2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
b) $1.0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
c) $0.6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
d) none of above

Solution : -

It is noted that the linear momentum of the disc is zero as it does not have translatory motion.
25. The angular momentum of a body with mass (m) moment of inertia (I) and angular velocity (w) rad/s is equal to :
a) 0
b) 60^{2}
c) $\frac{I}{0}$
d) $\frac{1}{\omega^{2}}$

Solution : -

Consider a rigid body rotating about a given axis with a uniform angular velocity ∞. Let the body consists of n particles of masses $m_{1}, m_{2}, m_{3}, \ldots, m_{n}$ at perpendicular distances $r_{1}, r_{2}, r_{3}, \ldots r_{n}$ respectively from the axis of rotation.

As the body is rigid, angular velocity w of all the particles is the same. However, as the distances of the particles from the axis of rotation are different, their linear velocities are different. If $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the linear velocities of the particles respectively, then
$v_{1}=r_{1} \omega$
$v_{2}=r_{2} \omega$
$v_{3}=r_{3} \omega$
The linear momentum of this particle of mass m_{1} is
$p_{1}=m_{1} v_{1}=m_{1}\left(r_{1} \omega\right)$
The angular momentum of this particle about the given axis
$=p_{1} \times r_{1}=\left(m_{1} r_{1} \omega\right) \times r_{1}$
$=m_{1} r_{1}^{2} \omega$
Similarly, angular momenta of other particles of the body about the given axis are
$m_{2} r_{2}^{2} \omega, m_{3} r_{3}^{2} \omega, \ldots m_{n} r_{n}^{2} \omega$
therefore Angular momentum of the body about the given axis.
$L=m_{1} r_{3}^{2} \omega+m_{2} r_{2}^{2} \omega+m_{2} r_{3}^{2} \omega+\ldots+m_{n} r_{n}^{2} \omega$
$=\left(m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+\ldots+m_{11} r_{11}^{2}\right) \omega$
or $L=\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}\right) \omega$
or $L=I \omega$
where, $I=\sum_{i=1}^{n} m_{1} r_{i}^{2}$ is moment of inertia of the body about the given axis.
26. Moment of the couple is called
a) angular momentum
b) force
c) torque
d) impulse

Solution : -

Moment of the couple is called torque
27. A body is rotating with angular velocity $\vec{w}=(3 \hat{i}-4 \hat{j}+\hat{k})$. The linear velocity of a point having position vector $\vec{r}=(5 \hat{i}-6 \hat{j}+6 \hat{k})$ is
a) $6 \hat{i}+2 \hat{j}-3 \hat{k}$
b) $18 \hat{i}+3 \hat{j}-2 \hat{k}$
c) $-18 \hat{i}-13 \hat{j}+2 \hat{k}$
d) $6 \hat{i}-2 \hat{j}+8 \hat{k}$

Solution:-

Here, $\vec{w}=3 \hat{i}-4 \hat{j}+\hat{k}$
$\vec{r}=5 \hat{i}-6 \hat{j}+6 \hat{k}$
As $\vec{v}=\vec{w} \times \vec{r}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ 5 & -6 & 6\end{array}\right|$
$=\hat{i}(-24-(-6))+\hat{j}(5-18)+\hat{k}(-18-(-20))$
$=-18 \hat{i}-13 \hat{j}+2 \hat{k}$
28. A stone of mass 1 kg tied to a light inextensible string of length $L=(10 / 3) \mathrm{m}$ is whirling in a circular path of radius L in a vertical plane. If the ratio of the maximum tension in the string to the minimum tension in the string is 4 and if g is taken to be $10 \mathrm{~m} / \mathrm{s}^{2}$ the speed of the stone at the highest point of the circle is :
a) $20 \mathrm{~m} / \mathrm{s}$
b) $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$
c) $5 \sqrt{2} \mathrm{~m} / \mathrm{s}$
d) $10 \mathrm{~m} / \mathrm{s}$

Solution : -

Ratio of maximum tension $\left(T_{2}\right)$ to minimum tension $\left(T_{1}\right)$ is :
$\mathrm{T}_{2} / \mathrm{T}_{1}=4$
Also, $\mathrm{T}_{2}=4 \mathrm{~T}_{1}$
If the difference between two tension is same as 6 mg , so
$\mathrm{T}_{2}-\mathrm{T}_{1}=6 \mathrm{mg}$
Further $4 \mathrm{~T}_{1}-\mathrm{T}_{1}=6 \mathrm{mg}$
$3 \mathrm{~T}_{1}=6 \mathrm{mg}$
$\mathrm{T}_{1}=2 \mathrm{mg}$
It is noted that tension at top of circle is :
$\mathrm{T}_{1}+\mathrm{mg}=m v_{1}^{2} / r$
$=m v_{1}^{2} / L$
Now $2 \mathrm{mg}+\mathrm{mg}=m v_{1}^{2} /(10 / 3)$
$v_{1}^{2}=3 g \times 10 / 3=10 g$
$\mathrm{v}_{1}=\sqrt{10 g}$
$=\sqrt{10 \times 10}$
$=10 \mathrm{~m} / \mathrm{s}$
29. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be \qquad
a) $\frac{g}{2}$
b) $\frac{\mathrm{g}}{3}$
c) $\frac{g}{4}$
d) $\frac{2 g}{3}$

Solution : -

Acceleration of the centre of mass of the rolling body is given by
$a=\frac{g \sin \theta}{1+\left(\frac{I}{M R^{2}}\right)}$
Moment of inertia of the ring about an axis perpendicular to the plane of the ring and passing through its centre is given by
$I=M R^{2}$
$\therefore a=\frac{g \sin \theta}{1+M R^{2} / M R^{2}}$
$=\frac{g \sin 30^{\circ}}{1+1}=\frac{g}{4}$
30. A ball of mass 0.25 kg attached to the end of a string of length 1.96 m is moving in a horizontal circle. The string will break if the tension is more than 25 N . What is the maximum speed with which the ball can be moved?
a) $14 \mathrm{~m} / \mathrm{s}$
b) $3 \mathrm{~m} / \mathrm{s}$
c) $3.92 \mathrm{~m} / \mathrm{s}$
d) $5 \mathrm{~m} / \mathrm{s}$

Solution : -

For a ball to move in horizontal circle, the ball should satisfy the condition
Tension in the string $=$ Centripetal force
$\Rightarrow T_{\text {max }}=\frac{M v_{\text {max }}^{2}}{R}$
$\Rightarrow v_{\max }=\sqrt{\frac{T_{\max } \cdot R}{M}}$
Making substitution, we obtain
$v_{\max }=\sqrt{\frac{25 \times 196}{0.25}}=\sqrt{196}=14 \mathrm{~m} / \mathrm{s}$
Note
In a vertical circle, the tension at the highest point is zero and at lowest point is maximum.
31. In the question number 62 , the linear acceleration of the rope is
a) $5 \mathrm{~m} \mathrm{~s}^{-2}$
b) $10 \mathrm{~m} \mathrm{~s}^{-2}$
c) $15 \mathrm{~m} \mathrm{~s}^{-2}$
d) $20 \mathrm{~m} \mathrm{~s}^{-2}$

Solution:-

From above solution, $\alpha=25 \mathrm{rad} \mathrm{s}^{-2}$
Linear acceleration, $a=\alpha \mathrm{R}=\left(25 \mathrm{rad} \mathrm{s}^{-2}\right)\left(40 \times 10^{-2} \mathrm{~m}\right)$
$=10 \mathrm{~m} \mathrm{~s}^{-2}$
32. The speed of a homogenous solid sphere after rolling down an inclined plane of vertical height h from rest without sliding is :
a) $\sqrt{10 g h / 7}$
b) $\sqrt{g h}$
c) $\sqrt{6 g h / 5}$
d) $\sqrt{4 g h / 3}$

Solution:-
Total energy $=$ Kinetic energy linear + Kinetic energy rolling
$E=\frac{1}{2}\left(m v^{2}\right)+\frac{1}{2} I \omega^{2}$
Here, $\omega=\mathrm{v} / \mathrm{r}$
For solid sphere, moment of inertia, $1=(2 / 5) \mathrm{mr}^{2}$
On substituting values of ω and 1
$E=\frac{1}{2}\left(m v^{2}\right)+(1 / 5) m v^{2}$
$\mathrm{E}=(7 / 10) \mathrm{mv}^{2}$
Now Potential energy = Total kinetic energy
$\mathrm{mgh}=(7 / 10) \mathrm{mv}^{2}$
\therefore Velocity $v=\sqrt{\frac{10 g h}{7}}$
33. Assertion: The moment of inertia of a rigid body reduces to its minimum value, when the axis of rotation passes through its centre of gravity.
Reason: The weight of a rigid body always acts through its centre of gravity.
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion.
c) If assertion is true but reason is false
d) If both assertion and reason are false.

Solution:-

By theorem of parallel axis both statements are correct and reason is the correct explanation of assertion.
34. Three particles, each of mass m gram, are situated at the vertices of an equilateral triangle $A B C$ of side/cm (as shown in the figure). The moment of inertia of the system about a line $A X$ perpendicular to $A B$ and in the plane of $A B C$, in gram cm^{2} units will be \qquad .

a) $3 / 2 \mathrm{ml}^{2}$
b) $3 / 4 \mathrm{ml}^{2}$
c) $2 \mathrm{ml}^{2}$
d) $\mathbf{5 / 4} \mathrm{ml}^{2}$

Solution:-

$I_{A X}=m(A B)^{2}+m(O C)^{2}$
$=m \ell^{2}+m\left(\ell \cos 60^{\circ}\right)^{2}$
$=m \ell^{2}+m \ell^{2} / 4=5 / 4 m \ell^{2}$

35. A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass is K . If radius of the ball be R , then the fraction of total energy associated with its rotational energy will be \qquad
a) $\frac{R^{2}}{K^{2}+R^{2}}$
b) $\frac{K^{2}+R^{2}}{R^{2}}$
c) $\frac{K^{2}}{R^{2}}$
d) $\frac{K^{2}}{K^{2}+R^{2}}$

Solution :-

Rotational energy $=\frac{1}{2} I(\omega)^{2}$
$=\frac{1}{2}\left(m K^{2}\right) \omega^{2}$
Linear kinetic energy $=\frac{1}{2} m \omega^{2} R^{2}$
therefore Required fraction
$=\frac{\frac{1}{2}\left(m K^{2}\right) \omega^{2}}{\frac{1}{2}\left(m K^{2}\right) \omega^{2}+\frac{1}{2} m \omega^{2} R^{2}}=\frac{K^{2}}{K^{2}+R^{2}}$
36. In the question number 66 , if wheel starts from rest, what is the kinetic energy of the wheel when 2 m of the cord is unwound?
a) 20 J
b) 25 J
c) 45 J
d) 50 J

Solution : -
Here, $R=20 \mathrm{~cm}=0.2 \mathrm{~m}, \mathrm{M}=20 \mathrm{~kg}$
As $\tau=\mathrm{FR}=(25 \mathrm{~N})(0.2 \mathrm{~m})=5 \mathrm{~N} \mathrm{~m}$
Moment of inertia of flywheel about its axis is
$I=\frac{M R^{2}}{2}=\frac{(20 \mathrm{Kg})(0.2 \mathrm{~m})^{2}}{2}=0.4 \mathrm{kgm}^{2}$
As $\quad \tau=I \alpha$
\therefore Angular acceleration of the wheel,
$\alpha=\frac{\tau}{I}=\frac{5 \mathrm{Nm}}{0.4 \mathrm{Kg} \quad \mathrm{m}^{2}}=12.5 \mathrm{rad} \quad \mathrm{s}^{-2}$
Angular displacement of wheel,
$\theta=\frac{\text { Length of unwound string }}{\text { Radius of the world }}=\frac{2 m}{0.2 \mathrm{~m}}=10 \mathrm{rad}$
Let Wbe final angular velocity.
As $w^{2}=w_{0}{ }^{2}+2 \alpha \theta$

Since the wheel starts from rest, therefore $\mathrm{w}_{0}=0$
$\therefore \mathrm{w}^{2}=2 \times\left(12.5 \mathrm{rad} \mathrm{s}^{-2}\right)(10 \mathrm{rad})=250 \mathrm{rad}^{2} \mathrm{~s}^{-2}$
\therefore Kinetic energy gained, $K=\frac{1}{2} I w^{2}$
$K=\frac{1}{2} \times 0.4 \mathrm{~kg} \quad \mathrm{~m}^{2} \times 250 \mathrm{rad}^{2} \mathrm{~s}^{-1}=50 \quad J$
37. A grindstone has a moment of inertia of $6 \mathrm{~kg} \mathrm{~m}^{2}$. A constant torque is applied and the grindstone is found to have a speed of $150 \mathrm{rpm}, 10$ seconds after starting from rest. The torque is
a) $3 \pi N m$
b) 3 Nm
c) $\frac{\pi}{3} \mathrm{Nm}$
d) $4 \pi N m$

Solution:-

Here, $\mathrm{l}=6 \mathrm{Kg} \mathrm{m}{ }^{2}, \mathrm{t}=10 \mathrm{~s}, \mathrm{w}_{0}=0$
$v=150 \mathrm{rpm}=\frac{150}{60} \mathrm{rps}=\frac{5}{2}$ rps
$w=2 \pi v=2 \pi \times \frac{5}{2}=5 \pi r a d \quad s^{-1}$
$\alpha=\frac{w-w_{0}}{t}=\frac{5 \pi-0}{10}=\frac{\pi}{2} r a d \quad s^{-2}$
$\therefore \quad$ Torque, $\tau=I \alpha=6 \times \frac{\pi}{2}=3 \pi N m$
38. A lamina is made by removing a small disc of diameter $2 R$ from a bigger disc of uniform mass density and radius $2 R$, as shown in the figure. The moment of inertia of this lamina about axes passing through O and P is I_{0} and I_{p} respectively. Both these axes are perpendicular to the plane of the lamina. The ratio $\frac{I_{P}}{I_{O}}$

a) $13 / 37$
b) $37 / 13$
c) $73 / 31$
d) $8 / 13$

Solution:-

Let M be mass of the whole disc.
Then, the mass of the removed disc $=\frac{M}{\pi(2 R)^{2}} \pi R^{2}=\frac{M}{4}$
So,moment of inertia of the remaining disc about an axis passing through O
$I_{O}=\frac{1}{2} M(2 R)^{2}-\left[\frac{1}{2}\left(\frac{M}{4}\right) R^{2}+\frac{M}{4} R^{2}\right]$
$=2 M R^{2}-\left[\frac{M R^{2}+2 M R^{2}}{8}\right]=M R^{2}\left[2+\frac{3}{8}\right]=\frac{13}{8} M R^{2}$
Moment of the inertia of the remaining disc about an axis passing through P is

$$
\begin{aligned}
& I_{P}=\left[\frac{1}{2} M(2 R)^{2}+M(2 R)^{2}\right]-\left[\frac{1}{2}\left(\frac{M}{4}\right) R^{2}+\frac{M}{4}(\sqrt{5 R})^{2}\right] \\
& =\left[2 M R^{2}+4 M R^{2}\right]-\left[\frac{M R^{2}}{8}+\frac{5 M R^{2}}{4}\right] \\
& =6 M R^{2}-\frac{11}{8} M R^{2}=\frac{37}{8} M R^{2} \\
& \therefore \frac{I_{p}}{I_{O}}=\frac{37}{4} \times \frac{8}{13}=\frac{37}{13}
\end{aligned}
$$

39. A disc is rotating with angular velocity ω. If a child sits on it, what is conserved?
a) Linear momentum
b) Angular momentum
c) Kinetic energy
d) Moment of inertia

Solution :-

As the weight of child is acting downwards, torque is zero. When external torque is zero, angular momentum remains conserved.
$\mathrm{L}=\mathrm{Iw}=$ constant
40. Particle of mass m is moving in a horizontal circle of radius R with uniform speed v. When it moves from one point to a diametrically opposite point, its :
a) kinetic energy changes by $\mathrm{mv}^{2} / 4$
b) momentum does not change
c) momentum changes by 2 mv
d) kinetic energy changes by $m v^{2}$

Solution : -

Now from the figure:

At point X , momentum $=\mathrm{mv}$
At point Y , momentum $=-\mathrm{mv}$
Hence, change in momentum
= mv-(-mv)
$=2 \mathrm{mv}$
So, change in energy will be zero.
41. Assertion: A rigid body not fixed in some way can have either pure translation or a combination of translation and rotation.
Reason: In rotation about a fixed axis, every particle of the rigid body moves in a circle which lies in a plane perpendicular to the axis and has its centre on the axis.
a) If both assertion and reason are true and reason is the correct explanation of assertion
b) If both assertion and reason are true but reason is not the correct explanation of assertion.
c) If assertion is true but reason is false. d) If both assertion and reason are false.

Solution : -

A rigid body fixed at one point or along a line can have only rotational motion. A rigid body not fixed in some way can have either pure translation or a combination of translation and rotation.
42. A man is sitting with folded hands on a revolving table. Suddenly, he stretches his arms. Angular speed of the table would:
a) increase
b) decrease
c) remain the same
d) nothing can be said

Solution : -

On stretching arms, distance K increases $\mathrm{I}=\mathrm{MK}^{2}$ increases. As $\mathrm{I} \omega=$ constant, therefore, angular velocity ω decreases.
43. Consider a particle of mass m having linear momentum \vec{p} at position \vec{r} relative to the origin O. Let \vec{L} be the angular momentum of the particle with respect to the origin. Which of the following equations correctly relate(s) \vec{r}, \vec{p} and \vec{L} ?
a) $\frac{d \vec{L}}{d t}+\vec{r} \times \frac{d \vec{p}}{d t}=0$
b) $\frac{d \vec{L}}{d t}+\frac{d \vec{r}}{d t} \times \vec{p}=0$
c) $\frac{d \vec{L}}{d t}-\frac{d \vec{r}}{d t} \times \vec{p}=0$
d) $\frac{d \vec{L}}{d t}-\vec{r} \times \frac{d \vec{p}}{d t}=0$

Solution:-

As $\vec{L}=\vec{r} \times \vec{p}$
Differentiate both sides with respect to time, we get

$$
\begin{aligned}
& \frac{d \vec{L}}{d t}=\frac{d}{d t}(\vec{r} \times \vec{p})=\frac{d \vec{r}}{d t} \times \vec{p}+\vec{r} \times \frac{d \vec{p}}{d t} \\
& =\vec{r} \times \frac{d \vec{p}}{d t} \quad\left(\therefore \frac{d \vec{r}}{d t} \times \vec{p}=0\right) \\
& \frac{d \vec{L}}{d t}-\vec{r} \times \frac{d \vec{p}}{d t}=0
\end{aligned}
$$

44. A B C is a triangular plate of uniform thickness. The sides are in the ratio shown in the figure. $I_{A B}, I_{B C}$ and $I_{C A}$ are the moments of inertia of the plate about $\mathrm{AB}, \mathrm{B} C$ and CA as axes respectively. Which one of the following relations is correct?
a) $I_{A B}>I_{B C}$
b) $I_{B C}>I_{A C}$
c) $I_{A B}+I_{B C}=I_{C A}$
d) $I_{C A}$ is maximum

Solution:-

Moment of inertia of the triangular plate is maximum about the shortest side because effective distance of mass distribution about this side is maximum. Since, distances of centre of mass from the sides are related as
$X_{B C}<X_{A B}<X_{A C}$
Therefore $I_{B C}>I_{A B}>I_{A C}$ or $I_{B C}>I_{A C}$
45. Assertion: A boiled egg can be easily distinguished from a raw unboiled egg by spinning.

Reason : The hard boiled egg has a moment of inertia which is more than that of the raw egg.
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion
c) If assertion is true but reason is false d) If both assertion and reason are false.

Solution : -

A hard boiled egg behaves as a rigid body whereas the raw egg has liquid in it which also moves. On spinning both the eggs with the same external torque, the hard boiled egg spins faster and the rotation of the raw egg is slower. This is due to the liquid in the raw egg which tends to move away from the axis of rotation thereby decreasing the effectiveness of the external torque.
46. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass. The centre of mass of the system from the 5 kg particle of nearly at a distance of \qquad
a) 80 cm
b) 33 cm
c) 50 cm
d) 67 cm

Solution : -

Let position of centre of mass be ($\mathrm{x}_{\mathrm{cm}}, 0$)

$x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$
$=\frac{5 \times 0+100 \times 10}{5+10}$
$=\frac{200}{2}=66.66 \mathrm{~cm}$
$x_{\mathrm{cm}}=67 \mathrm{~cm}$
47. A uniform square plate has a small piece Q of an irregular shape removed and glued to the centre of the plate leaving a hole behind. The moment of inertia about the z-axis is then

a) increased
b) decreased
c) the same
d) changed in unpredicted manner

Solution : -

According to the theorem of perpendicular axes
$I_{z}=I_{x}+I_{y}$
With the hole, I_{x} and I_{y} both decrease. Gluing the removed piece at the centre of square plate does not affect I_{z}. Hence, I_{z} decrease overall.
48. Which of the following statements is correct?
a) For a general translational motion, momentum \vec{p} and velocity \vec{v} need not be parallel.
b) For a general rotational motion, angular momentum \vec{L}. and angular velocity \vec{w} are always parallel.
c) For a general translational motion, acceleration \vec{a} and velocity \vec{v} are always parallel.
d) For a general rotational motion, angular momentum \vec{L} and angular velocity \vec{w} need not be parallel.

Solution:-

For a general rotational motion, angular momentum \vec{L} and angular velocity \vec{w} need not be parallel. For a general translation motion \vec{p} and \vec{v} are always parallel.
49. A solid homogeneous sphere of mass M and radius R is moving on a rough horizontal surface, partly rolling and partly sliding. During this kind of motion of the sphere \qquad
a) total kinetic energy is conserved
b) the angular momentum of the sphere about the point of contact with the plane is conserved
c) only the rotational kinetic energy about the centre of mass is conserved
d) angular momentum about the centre of mass is conserved

Solution : -

Angular momentum about the point of contact, for solid homogeneous sphere of mass M and radius R is conserved.
50. A rod of we ight W is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position. The knives are at a distance d from each other. The centre of mass of the rod is at distance x from I. The normal reaction on A is
a) $\frac{W d}{x}$
b) $\frac{W(d-x)}{x}$
c) $\frac{W(d-x)}{d}$
d) $\frac{W x}{d}$

Solution : -

Balancing torque about B , we have
$N_{A}(d)=W(d-x)$
$N_{A}=\frac{W(d-x)}{d}$

