

p-Block Elements Important Questions With Answers

NEET Chemistry 2023

 Which of the following oxoacid of 	sulphur has -O-O- linkage?	
a) H_2 S_2O_7 , pyrosulphuric acid	b) H ₂ SO ₂ , sulphurous acid	c) H ₂ SO ₄ .

c) H_2SO_4 , sulphuric acid

d) $H_2SO_2O_8$, peroxodisulphuric acid

Solution: -

2. P₂O₅ is heated with water to give ____

a) Hypophosphorous acid b) Phosphorous acid c) Hypophosphoric acid d) Orthophosphoric acid

Solution: -

When $P_2O_5(orP_4O_{10})$ is heated with water, it form orthophosphoric acid (H_3PO_4) .

3. Holme's signal uses chemical compound

a) calcium carbide b) calcium phosphide c) calcium carbide and calcium phosphide

d) calcium carbide and aluminium carbide

Solution: -

Holme's signal uses calcium carbide and calcium phosphide. The spontaneous combustion of phosphine is technically used in Holme's signals. Containers containing a mixture of calcium carbide and calcium phosphide are pierced and thrown in the sea when the gases burn and serve as a signal.

4. Assertion: Carbon monoxide is a poisonous gas.

Reason: Carbon monoxide combines with haemoglobin to form carboxy - haemoglobin which prevents absorption of oxygen by it

a) If both assertion and reason are true and reason is the correct explanation of assertion

b) If both assertion and reason are true but reason is not the correct explanation of assertion

c) If assertion is true but reason is false d) If both assertion and reason are false

Oxidation of thiosulphate by iodine gives ____

a) Tetrathionate ion b) Sulphide ion c) Sulphate ion d) Sulphite ion

Solution: -

$$2 S_2 O_3^{2-} + I_2 \longrightarrow S_4 O_6^{2-} + 2I^-$$

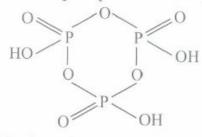
Thiosulphate ion Tetrathionate ion

6. H₃PO₂ is the molecular formula of an acid of phosphorous. Its name and basicity respectively are _

a) Phosphorous acid and 2 b) Hypophosphorous acid and 2 c) Hypophosphorous acid and one

d) Hypophosphoric acid and two

Solution: -


The name of H_3PO_2 is hypophosphorous acid when dissolve in water, it gives only one H^+ , so its basicity is one.

$$\begin{array}{c} O \\ H \\ \end{array} \longrightarrow \begin{array}{c} H^+ + \\ H \\ \end{array} \longrightarrow \begin{array}{c} O \\ H^- \end{array}$$

- 7. How many P-O-P bonds appear in cyclotrimetaphosphoric acid?
 - a) Four b) Three c) Two d) One

Solution: -

Cyclotrimetaphosphoric acid is (HPO₃)₃

Number of P - O - P bonds = 3

- 8. Electropositive character for the elements of group 13 follows the order
 - a) B > AI > Ga > In > TI b) B < AI < Ga < In < TI c) B < AI > Ga < In > TI d) B < AI > Ga > In > TI

Solution: -

As we move from B to AI, the sum of $\triangle_i H_1 + \triangle_i H_2 + \triangle_i H_3$ decreases substantially (6887 kJ mol⁻¹ to 5137 kJ mol⁻¹) due to increase in the atomic size and hence AI has a high tendency to lose electrons. Since the electrode potentials increase from AI to TI, therefore, their electropositive character decreases, i.e., AI (- 1.66 V) to Ga (- 0.56 V) to In (- 0.34 V) to TI (+ 1.26 V) accordingly.

- 9. Noble gases do not react with other elements because
 - a) They are monoatomic b) They are found in abundance c) The size of their atoms is very small
 - d) They are completely paired up and have stable electron shells

Solution: -

In general, noble gases are not very reactive Their chemical inertness is due to the fact that they have completely filled ns²np⁶ electronic configuration of their valence shells. The other reasons are very high lonisation enthalpy and almost zero electron affinity.

- 10. Borax is not used
 - a) as a styptic to stop bleeding b) in making enamel and pottery glazes c) as a flux in soldering
 - d) in making optical glasses

Solution: -

Borax is not used as a styptic to stop bleeding.

- 11. The following acids have been arranged in order of decreasing acid strength. Identify the correct order.
 - I. CIOH II. BrOH III. IOH
 - **a) |>||>|||** b) ||>|>||| c) |||> || d) |> ||| > ||
- 12. Which of the following is not tetrahedral in shape?
 - a) NH_4^+ b) $SiCl_4$ c) SF_4 d) SO_4^{2-}

Solution: -

SF₄ has trigonal bipyramidal geometry as S in SF₄ undergoes, Sp³d hybridisation.

13. Which of the following oxides is anhydride of nitrous acid?

a) N_2O_3 b) NO_2 c) **NO** d) N_2O_4

Solution: -

$$2HNO_2 \rightarrow N_2O_3 + H_2O$$

- 14. Which of the following statements about H₃BO₃ is not correct?
 - a) It is a strong tribasic acid b) It is prepared by acidifying an aqueous solution of borax
 - c) It has a layer structure in which planar BO₃ units are joined by hydrogen bonds
 - d) It does not act as proton donor but acts as a Lewis acid by accepting hydroxyl ion

Solution: -

Boric acid (H_3BO_3) is a weak monobasic acid with Ka = 1.0 x 10 $^{-9}$. ti may be noted that boric acid does not act as a protonic acid (i.e. proton donor) but behaves as a Lewis acid by accepting a pair of electrons from OH^- ion.

$$B(OH)_3 + 2H - O - H \rightarrow [B(OH)_4]^- + H_3O^+$$

- 15. Which of the following is not a use of noble gases?
 - a) Argon is widely used for filling incandescent electric bulbs.
 - b) Neon is used in safety devices for protecting electrical instruments.
 - c) Radon is used in radiotherapy of cancer. d) Helium is filled in tubes of cycles and scooters tyres.

Solution: -

Helium is used in filling tubes of aeroplane tyres.

- 16. Which one has the lowest boiling point?
 - a) NH_3 b) PH_3 c) AsH_3 d) SbH_3

Solution: -

Due to absence of H-bonding, PH₃ has the lowest boiling point. Thus, the order of boiling point of hydrides of group 15 is

$$BiH_3 > SbH_3 > NH_3 > AsH_3 > PH_3$$

17. Match the column I with column II and mark the appropriate choice.

Column I	Column II	
(A) H ₂ SO ₄ (i) Highest electron gain enthalpy		
(B) CCl ₃ NO ₂ (ii) Chalcogen		
(C) Cl ₂	(iii) Tear gas	
(D) Sulphur	(iv) Storage batteries	

a) (A)
$$\rightarrow$$
 (iv), (B) \rightarrow (iii) (C) \rightarrow (i), (D) \rightarrow (ii) b) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii) c) (A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iii) d) (A) \rightarrow (ii), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (iv)

- 18. Boron is unable to form BF₆³⁻ ions due to
 - a) non-availability of d-orbitals b) small size of boron atom c) non-metallic nature
 - d) less reactivity towards halogens.
- 19. Which of the following elements has maximum electron affinity?

Solution: -

The electron affinity decreases from $Cl \to Br \to I$, i.e., on moving down the group However, electron affinity of fluorine is unexpected low. It cannot be explained by any simple mechanism. It is probably due to small size of the atom. The addition of an extra election produces high electron charge density in a relatively compact 2p subshell resulting in strong electron-electron repulsion. The repulsive forces between electrons imply low electron affinity. So, the correct order of electron affinity for halogens is

20. There is a large number of carbon compounds due to

- a) tetravalency of carbon b) strong catenation property of carbon c) allotropic property of carbon
- d) non-metallic character of carbon
- 21. What are X and Y in the reaction?

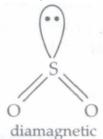
$$3B_2H_6+6X
ightarrow 3{\left[BH_2(X)_2
ight]}^+{\left[BH_4
ight]}^-\longrightarrow Y+12H_2$$

a)
$$X = NH_3$$
, $Y = B_3N_3H_6$ b) $X = CO$, $Y = BH_3CO$ c) $X = NaH$, $Y = NaF$ d) $X = NF_3$, $Y = B_3N_3$

Solution: -

$$egin{aligned} 3B_2H_6 + 6NH_3 &
ightarrow 3[BH_2(NH_3)_2]^+[BH_4]^- \ (X) & \downarrow Heat \ 2B_3N_3H_6 + 12H_2 \ (Y) \end{aligned}$$

- 22. Carbon monoxide acts as a donor and reacts with certain metals to give metal carbonyls. This is due to a) presence of one sigma and two pi bonds between C and O(:C = O:)
 - b) presence of a lone pair on carbon atom in CO molecule
 - c) presence of lone pair on oxygen atom in CO molecule d) poisonous nature of CO
- 23. Sugarcane on reaction with nitric acid gives:
 - a) CO₂ and SO₂ b) (COOH)₂ c) 2HCOOH (two moles) d) no reaction


Solution: -

$$C_{12}H_{22}O_{11} + 18[O] \rightarrow 6(COOH)_2 + 5H_2O$$

- 24. Which one of the following oxides is expected to exhibit paramagnetic behaviour?
 - a) CO_2 b) SiO_2 c) SO_2 d) CIO_2

Solution: -

$$O = C = O, O = Si = O$$

O O O Para magnetic

25. Which is the strongest acid in the following?

a) $HCIO_4$ b) H_2SO_3 c) H_2SO_4 d) $HCIO_3$

Solution: -

HClO₄ with highest oxidation number and its conjugate base is resonance stabilised, hence it is most acidic

- 26. On heating ammonium dichromate and barium azide separately we get
 - a) N_2 in both cases b) N_2 with ammonium dichromate and NO with barium azide
 - c) N₂O with ammonium dichromate and N₂ with barium azide
 - d) N_2O with ammonium dichromate and NO_2 with barium azide.

Solution: -

$$(NH_4)_2Cr_2O_7 \stackrel{\Delta}{\longrightarrow} N_2 \text{+} 4H_2O \text{+} Cr_2O_3$$

$$Ba(N_3)_2 \xrightarrow{\Delta} Ba+3N_2$$

27. Which of the following acids forms three series of salts?

a) H₃PO₂ **b)** H₃BO₃ **c)** H₃PO₄ **d)** H₃PO₃

Solution: -

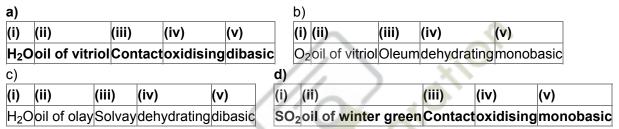
H₃PO₄ is a tribasic acid as it has 3P-OH bonds i.e., 3 ionisable H atoms thus, can form three series of salts.

28. Which of the following is an isoelectronic pair?

a) ICl_2 , CIO_2 b) BrO_2^- , BrF_2^+ c) CIO_2 , BrF d) CN^- , O_3

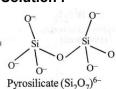
Solution: -

Both BrO₂⁻ (35+2 x 8+1=52) and BrF₂⁺ (35+2 x 9-1=52) have 52 electrons.


29. Which of the following phosphorus is the most reactive?

a) Scarlet phosphorus b) White phosphorus c) Red phosphorus d) Violet phosphorus

Solution: -


White phosphorus has low ignition temperature. So, it is most reactive among all the allotropes.

- 30. Fluorine is the best oxidising agent because it has
 - a) highest electron affinity **b) highest reduction potential** c) highest oxidation potential
 - d) lowest electron affinity.
- 31. Fill in the blanks by choosing the appropriate option. Conc. H_2SO_4 chars paper, wood and sugar by removing (i) from them. It is also known as ii. It is manufactured by (iii) process. It is a strong (iv) and (v) acid.

- 32. Name the type of the structure of silicate in which one oxygen atom of [SiO₄]⁴⁻ is shared?
 - a) Linear chain silicate b) Sheet silicate c) Pyrosilicate d) Three dimensional

Solution: -

- 33. A black powder when heated with conc. HCl gives a greenish yellow gas. The gas acts as an oxidising and a bleaching agent. When it is passed over slaked lime, a white powder is formed which is a ready source of gas. The black powder and white powder respectively are
 - a) KClO₃ and NaClO₃ b) MnO₂ and Ca(OCl)₂ c) MnO₂ and KClO₃ d) MnCl₄ and COCl₂

Solution: -

 $MnO_2+4HCI \rightarrow MnCl_2+2H_2O+Cl_2$ $Cl_2+H_2O \rightarrow 2HCl+[O]$ $2Ca(OH)_2+2Cl_2 \rightarrow Ca(OCl_2)+2H_2O$

- 34. Which of the following statements is not correct about the structure of PCl₅?
 - a) PCIs has a trigonal bipyramidal structure. b) Three equatorial P-CI bonds are equivalent.
 - c) The two axial bonds are different and longer than equatorial bonds.
 - d) Equatorial bond pairs suffer more repulsion than that of the axial bond pairs.

Solution: -

The axial bond pairs suffer more repulsion as compared to equatorial bond pairs.

- 35. Which among the following statements is incorrect?
 - a) XeF₄ and SbF₅ combine to form salt. b) He and Ne do not form clathrates.
 - c) He has highest boiling point in its group d) He diffuses through rubber and polyvinyl chloride.
- 36. Boric acid is an acid because its molecule
 - a) contains replaceable H⁺ ion b) gives up a proton c) accepts OH⁻ from water releasing proton
 - d) combines with proton from water molecule
- 37. Which of the following is not correct about xenon hexafluoride?
 - a) It has oxidation state of +6. b) The hybridisation involved in XeF₆ is sp³d³
 - c) The shape of XeF₆ is distorted octahedral and can be represented as
 - d) On hydrolysis it gives Xe, HF and O₂

Solution: -

On hydrolysis the products formed are XeO₃ and HF

$$XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$$

38. Assertion: Atomic radius of Ga is larger than that of aluminium.

Reason: Atomic radius always increases down the group.

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false

Solution: -

There are deviations in properties of elements of a group in p - block. Atomic radius of Ga is less than that of Al because of the presence of additional 10 d-electrons which offer poor screening effect for the outer electrons from the increased nuclear charge in gallium.

- 39. On heating a mixture of NH₄Cl and KNO₂, we get

 - a) NH_4NO_3 b) $KNH_4(NO_3)_2$ c) N_2 d) NO_3

Solution: -

$$NH_4CI+KNO_2 \xrightarrow{\Delta} [NH_4NO_2] \xrightarrow{\Delta} N_2+2H_2O.$$

40. Match the list of noble gas compounds in column I with their shapes in column II and mark the appropriate choice.

Column I	Column II
(A) XeF ₄	(i) Distorted octahedra
(B) XeF ₆	(ii) Tetrahedral
(C) XeO ₃	(iii) Square planar
(D) XeO ₄	(iv) Trigonal pyramidal

$$\overline{a) (A) \rightarrow (iv); (B) \rightarrow (iii); (C) \rightarrow (ii); (D) \rightarrow (i) \quad b) (A) \rightarrow (i); (B) \rightarrow (ii); (C) \rightarrow (iii); (D) \rightarrow (iv)$$

$$\text{c) (A)} \rightarrow \text{(ii); (B)} \rightarrow \text{(iii); (C)} \rightarrow \text{(iv); (D)} \rightarrow \text{(i)} \quad \text{d) (A)} \rightarrow \text{(iii); (B)} \rightarrow \text{(i); (C)} \rightarrow \text{(iv); (D)} \rightarrow \text{(ii)}$$

- 41. Which of the following pairs of compounds is isoelectronic and isostructural?
 - a) BeCl₂, XeF₂ b) Tel₂, XeF₂ c) IBr₂-, XeF₂ d) IF₃, XeF₂

Solution: -

Thus, both IBr₂ and XeF₂ have linear geometry. So, they are iso-structural and number of valence electrons present in both the species is same, i.e., 22. Thus, they are also isoelectronic.

S.No.	Compounds	Number of valence electrons	Geometry
1.	BeCl ₂	2+14=16	Linear
2.	XeF ₂	8+14=22	Linear
3.	Tel ₂	6+14=20	Bent or V-shape

4.	lBr₂⁻	7+14+1=22	Linear
5.	IF ₂	7+21=28	T-shape

- 42. Which of the following statements is false?
 - a) Radon is oblained from the decay of radium b) Helium is inert gas
 - c) Xenon is the most reactive among the rare gases
 - d) The most abundant rare gas found in the atmosphere is helium

Solution: -

The amount of noble gases present in atmosphere (in percent by) is given below

Element (Volume %)	Abundance	
Не	5.24 x 10 ⁻⁴	
Ne	1.82 x 10 ⁻³	
Ar	0.934	
Kr	1.14 x 10 ⁻³	
Xe	8.7 x 10 ⁻⁶	

So, argon is most abundant, not helium.

- 43. Which is the correct arrangement of the compounds based on their bond strength?
 - a) HF> HCI > HBr > HI b) HI > HBr > HCI > HF c) HCI> HF > HBr > HI d) HF > HBr > HCI > HI
- 44. Which one of the following oxides of chlorine is obtained by passing dry chlorine over silver chlorate at 90° C? a) Cl_2O b) ClO_3 c) ClO_2 d) ClO_4

Solution : -

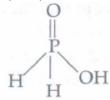
$$2{
m AgClO}_3 + {
m Cl}_2(dry) \stackrel{
m Heat}{\longrightarrow} 2{
m AgCl} + 2{
m ClO}_2 + {
m O}_2$$

45. The formation of the oxide ion, O²⁻ _(g) from oxygen atom requires first an exothermic and then an endothermic step as shown below:

$$O_{(g)} + e^- \rightarrow O^-_{(g)} \Delta_f$$
, $H^o = -141 \text{ kJ mol}^{-1}$
 $O^-_{(g)} + e^- \rightarrow O^{2-}_{(g)}$; Δ_f , $H^o = +780 \text{ kJ mol}^{-1}$

Thus, process of formation of O^{2-} in gas phase is unfavourable even though O^{2-} is isoelectronic with neon. It is due to the fact that:

- a) O ion has comparatively, smaller size than oxygen atom b) Oxygen is more electronegative
- c) addition of electron in oxygen results in larger size of the ion.
- d) electron repulsion outweighs the stability gained by achieving noble gas configuration


Solution: -

The process of formation of O^{2-} in gas phase is unfavourable even though O^{2-} is isoelectronic with neon because electron repulsion outweigh the stability gained by achieving noble gas configuration.

- 46. In the clathrates of xenon with water the nature of bonding in Xe and H₂O molecule is
 - a) covalent b) hydrogen bonding c) coordinate d) dipole-induced dipole
- 47. Which of the following statements is not valid for oxoacids of phosphorus?
 - a) Orthophosphoric acid is used in the manufacture of triple superphosphate.
 - b) Hypophosphorous acid is a diprotic acid.
 - c) Alloxoacids contain tetrahedral four coordinated phosphorus
 - d) All oxoacids contain at least one P=O unit and one P-OH group.

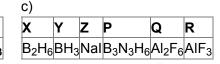
Solution: -

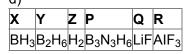
Hypophosphorus acid is a monoprotic acid

- 48. Which of the following types of forces bind together the carbon atoms in diamond?
 - a) Ionic
- b) Covalent c) Dipolar d) van der Waals

Solution: -

In diamond, each carbon atom undergoes sp³ hybyidisation and is covalently bonded to three other carbon atoms by single bonds


49. NaBH₄ + $I_2 \rightarrow X + Y + Z$


$$BF_3 + NaH \xrightarrow{450K} X + P$$

$$BF_3 + LiAIH_4 \rightarrow X + Q + R$$

X, Y, Z, P, Q and R in the reactions a

- a)
- B₂H₆NalH₂NaFLiFAIF₃

Solution: -

$$2BF_3 + 6NaH \xrightarrow{450K} B_2H_6 + 6NaF \stackrel{(X)}{\stackrel{(X)}{\stackrel{(X)}{\longrightarrow}}} B_2H_6 + 6NaF \stackrel{(X)}{\stackrel{(X)}{\stackrel{(X)}{\longrightarrow}}} B_2H_6 \stackrel{(X)}{\stackrel{(X)}{\longrightarrow}} B_2H_6 \stackrel{(X)}{\longrightarrow} B_$$

$$4BF_{3}+3LiAlH_{4}
ightarrow 2B_{2}H_{6}+3LiF+3AlF_{3} \ _{(X)}^{(R)}$$

50. What happens when a mixture of cobalt oxide and borax is heated in a flame on a loop of platinum wire?

c) A blue coloured Co(BO₂)₂ bead is formed. d) A red coloured Co(BO₂)₂ bead is formed.

- a) A transparent white bead is formed. b) A bright pink coloured NaBO₂ bead is formed
- Solution: -