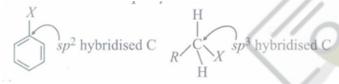


Haloalkanes and Haloarenes Important Questions With Answers

NEET Chemistry 2023

- 1. The main difference in C X bond of a haloalkane and a haloarene is
 - a) C X bond in haloalkanes is shorter than haloarenes.

b)


in haloalkanes the C attached to halogen in C - $\rm X$ bond is $\rm Sp^3$ hybridised while in haloarenes it is $\rm Sp^2$ hybridised.

c)

- C X bond in haloarenes acquires a double bond character due to higher electronegativity of X than haloalkanes.
- d) haloalkanes are less reactive than haloarenes due to difficulty in C X cleavage in halo alkanes.

Solution: -

In haloarenes, carbon of C - X is Sp² hybridised while in haloalkanes it is Sp³ hybridised.

- 2. The (R) and (S) enantiomers of an optically active compound differ in :
 - a) their solubility in a chiral solvent b) their reactivity with a chiral reagent
 - c) their optical rotation of plane polarized light d) their melting points.

Solution: -

R and S forms of an optically active compound differ in their behavior towards the plane polarized light.

When plane polarized light rotate towards right \rightarrow R-form.

When plane polarized light rotate towards left →S-form

- 3. The most important chemical method to resolve a racemic mixture makes use of the formation of :
 - a) a meso compound b) enantiomers c) diastereomers d) racemetes

Solution: -

To resolve racemic mixtures the formation of diastereomers is done as diastereomers have different physical properties such as melting point, boiling point, solubilities in a given solvent etc. Due to this they can be easily separated by fractional distillation.

- 4. Choose the correct increasing order of density of the following compound
 - a) $C_3H_7CI < C_3H_{7I} < CH_2CI_2 < CCI_4$ b) $C_3H_7I < C_3H_7CI < CH_2CI_2 < CCI_4$ c) $C_3H_7I < C_3H_7CI < CH_2CI_2$
 - d) $CCI_4 < CH_2CI_2 < C_3H_7I < C_3H_7CI$

Solution: -

As density increases with increase in number of carbon atoms, halogen atoms and atomic mass of the halogen atoms. Hence correct increasing order is $C_3H_7CI < C_3H_{7I} < CH_2CI_2 < CCI_4$

5. In a ^SN² substitution reaction of the type

$$\text{R-Br} + \text{Cl}^- \overset{DMF}{\longrightarrow} \text{R-Cl} + \text{Br}^-$$

Which one of the following has the highest relative rate?

a)
$$_{\text{CH}_3}$$
 b) $_{\text{CH}_3}$ **CH** $_{3}$ **CH** $_{2}$ **CH** $_{2}$ **CH** $_{2}$ **CH** $_{2}$ **CH** $_{3}$ **CH** $_{3}$ **CH** $_{3}$ **CH** $_{3}$ **CH** $_{3}$ **CH** $_{3}$

Solution: -

In SN2 reaction primary is more reactive than secondary and tertiary alkyl halides.

Thus, order of SN2 is:

$$CH_3-X > R-CH_2-X > R_2CH-X > R_3C-X$$

S_N reaction is favoured by small groups on the carbon atoms attached to halogen.

6. What is 'A' in the following reaction?

- 7. Which one of the following pairs represents stereoisomerism
 - a) Chain isomerism and rotational isomerism b) Structural isomerism and geometrical isomerism
 - c) Linkage isomerism and geometrical isomerism d) Optical isomerism and geometrical isomerism

Solution: -

Pair of optical isomerism and geometrical isomerism are able to exhibit the phenomenon of stereoisomerism because both type of isomers differ only in their orientation in space.

- 8. Molecules whose mirror image is nonsuperimposable over them are known as chiral. Which of the following molecules is chiral in nature?
 - a) 2-Bromobutane b) 1-Bromobutane c) 1-Bromobutane d) 2-Bromopropan-2-ol

Solution: -

$$CH_3CH_2 - CH(Br) - \overset{*}{C}H_3 \ 2 - Bromobutane$$

9. In the replacement reaction

$$\longrightarrow$$
CI+MF \longrightarrow \longrightarrow CF+MI

The reaction will be most favorable if M happens to be:

Solution: -

Tertiary alkyl halides shows S_N^1 mechanism to the greater extent. In the given reaction negative ion will attack on carbocation. Thus, greater the tendency of ionization (greater ionic character in M-F bond) more favourable will be reaction. In the given options Rb-F is most ionic and hence it will be most favourable for S_N^1 mechanism.

- 10. Toluene reacts with a halogen in the presence of iron (III) chloride giving ortho and para halo compounds. The reaction is
 - a) electrophilic elimination reaction b) electrophilic substitution reaction c) free radical addition reaction
 - d) nucleophilic substitution reaction.

The reaction is electrophilic substitution reaction.

- 11. Consider the reactions,
 - (i) $(CH_3)_2CH$ - $CH_2Br \xrightarrow{C_2H_5OH} (CH_3)_2CH$ - $CH_2OC_2H_5$ + HBr
 - (ii) (CH₃)₂CH-CH₂Br $\stackrel{C_2H_5O-}{\longrightarrow}$ (CH₃)₂CH-CH₂OC₂H₅ + Br

The mechanisms of reactions (i) and (ii) are respectively:

a) $^{S}N^{1}$ and $^{S}N^{2}$ b) $^{S}N^{1}$ and $^{S}N^{1}$ c) $^{S}N^{2}$ and $^{S}N^{2}$ d) $^{S}N^{2}$ and $^{S}N^{1}$

Solution: -

These reactions are purely ^SN¹ reactions as in reaction (i) and (ii) there is no rearrangement takes place (rearrangement occurs in ^SN¹ mechanism). Simple substitution of nucleophile takes place.

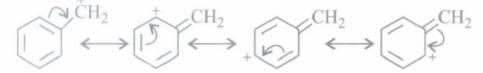
- 12. Chlorobenzene on treatment with sodium in dry ether gives diphenyl. The name of the reaction is
 - **a) Fittig reaction b)** Wurtz- Fittig reaction **c)** Sandmeyer reaction **d)** Gattermann reaction **Solution :** -

$$\bigcirc$$
 -Cl + 2Na + Cl - \bigcirc Ether \bigcirc

13. **Assertion:** Melting points of isomeric dihalobenzenes are nearly the same.

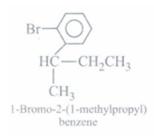
Reason: Isomeric dihalobenzenes have different molecular masses

- a) If both assertion and reason are true and reason is the correct explanation of assertion.
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false. d) If both assertion and reason are false


Solution: -

The para-isomers are high melting as compared to their ortho- and meta- isomers. This is due to symmetry of para-isomers that they fit in crystal lattice better as compared to ortho- and meta-isomers.

- 14. Reaction of C₆H₅CH₂Br with aqueous sodium hydroxide follows _____
 - a) S_N1 mechanism b) S_N2 mechanism
 - c) Any of the above two depending upon the temperature of reaction d) Saytzeff rule


Solution: -

Benzylic halides show high reactivity towards the S_N1 reaction. The carbocation thus formed gets stabilised through resonance as shown in the figure.

- 15. Which of the following is not correctly matched with its IUPAC name?
 - a) CHF2CBrCIF: I-Brorno-Lchloro-1, 2, 2 -trifluoroethane
 - b) (CCl₂)₃CCl: 2-(Trichloromethyl)-1, 1, 1, 2, 3, 3, 3 -heptachloropropane
 - c) CH₃C(p-ClC₆H₄)₂CH(Br)CH₃: 2- Bromo-3,3-bis(4-chlorophenyl) butane
 - d) o-BrC₆H₄CH(CH₃)CH₂CH₃: 2- Bromo-1-methylpropylbenzene

Solution: -

- 16. HBr reacts fastest with _
 - a) 2 -methyl propan-1-ol b) 2 -methyl propan-2-ol c) propan-2-o1 d) propan-1-ol

2-methylpropan-2-ol gives 3° carbocation, so it reacts with HBr at faster speed.

$$\begin{array}{ccc}
CH_3 & CH_3 \\
CH_3 - C - CH_3 + H^+ \longrightarrow CH_3 - C - CH_3 \\
OH & OH_2
\end{array}$$

2-methylpropan-2-ol

17. The ease of dehydrohalogenation of alkyl halide with alcoholic KOH is

- a) 3°<2°<1° b) 3°>2°>1° c) 3°<2°>1° d) 3°>2°<1°
- 18. Which of the following alkyl halides will undergo S_N1 reaction most readily

- a) $(CH_3)_3C-F$ b) $(CH_3)_3C-CI$ c) $(CH_3)_3C-Br$ d) $(CH_3)_3C-I$

Solution: -

As C-I bond is weakest, (CH₃)C-I will undergo S_N1 reaction most readily.

19. The compound which reacts fastest with Lucas reagent is (at room temperature)

- a) butan-1-ol b) butan-2-ol c) 2-methyl propan-1-ol d) 2-methyl propan-2-ol

Solution: -

In Lucas test, when Lucas reagent is treated with 1° , 2° and 3° alcohols, then turbidity appears, if turbidity is appeared immediately, then alcohol is tertiary, 2-methyl propan-2-ol is a tertiary alcohol Hence, it reacts fastest with Lucas reagent

- 20. Which is the correct increasing order of boiling points of the following compounds?
 - 1-Bromoethane, 1-Brornopropane, 1-Brornobutane, Bromobenzene
 - a) Bromobenzene < 1-Bromobutane < 1-Bromopropane < 1-Bromoethane
 - b) Bromobenzene < 1-Bromoethane < 1-Bromopropane < 1-Bromobutane
 - c) 1-Bromopropane < 1-Bromobutane < 1-Bromoethane < Bromobenzene
 - d) 1-Brornoethane < 1-Bromopropane < 1-Bromobutane < Bromobenzene

Solution: -

For the same halogen, boiling point increases as the size of the hydrocarbon part increases.

21. Identify the products X and Y in the given reaction,

$$CH_3 - CH - CH_3 + Mg \xrightarrow{Dry \ ether} X \xrightarrow{D_2o} Y$$

$$X=CH_3-CH-CH_2Mg, \qquad X=CH_3-CH-CH_3 \ {}_{MgBr}$$
 a) $Y=CH_3-CH_2CH_2CH_2OH$ b) $Y=CH_3-CH-CH_3 \ X=CH_3-CH-CH_3 \ X=CH_3-CH-CH_3 \ X=CH_3-CH-CH_2Mg$ c) $Y=CH_3-CH-CH_3 \ {}_{OD}$ d) $Y=CH_3-CH-CH_3 \ {}_{OH}$

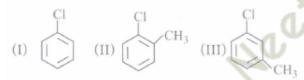
$$CH_3 - CH - CH_3 + Mg \xrightarrow{dry \ ether} CH_3 - C H - CH_3 \xrightarrow{D_2O} CH_3 - CH - CH_3 \xrightarrow{D_2O} CH_3 - CH_3 -$$

22. **Assertion:** The boiling point of the compounds increases in the order: Isopropylchloride < 1-Chloropropane < 1-Chlorobutane.

Reason: Boiling point depends upon the molecular mass and surface area.

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false.
- 23. Which of the following is the most reactive towards nucleophilic substitution reaction?

a)
$$CICH_2 - CH = CH_2$$
 b) $CH_2 = CH - CI$ c) $CH_3CH = CH - CI$ d) C_6H_5CI

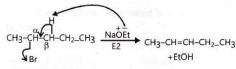

Solution: -

Order of reactivity of different halo compounds towards nucleophilic substitution reactions are: allyl chloride> vinyl chloride> chlorobenzene.

24. The position of - Br in the compound in CH₃CH=CHC(Br)(CH₃)₂ can be classified as

a) allyl b) aryl c) vinyl d) secondary

25. Arrange the compounds in increasing order of rate of reaction towards nucleophilic substitution


a) (I)
$$<$$
 (III) $<$ (II) $<$ (III) $<$ (III)

Solution: -

Presence of electron donating group (-CH₃) decreases the reactivity towards nucleophilic substitution and the effect at a-position is greater than at m-position.

- 26. Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:
 - (I) p-Elimination reaction
 - (2) Follow Zaitsev rule
 - (3) Dehydrohalogenation reaction
 - (4) Dehydration reaction
 - **a)** (**I),(2),(3) b)** (1),(2),(3) **c)** (**I),(3),(4) d)** (2),(3),(4)

Solution: -

- Sec. Alkyl halide
- (i) This reaction is an example of β -elimination.
- (ii) Hydrogen is removed from β -carbon and halgoen from α -carbon, hence, dehydrohalgoenation reaction.
- (iii) Generally in E₂ reaction Zaitsev alkene is formed as major product (more stable alkene).
- 27. Which of the following compounds will have highest melting point?
 - a) Chlorobenzene b) a-Dichlorobenzene c) m- Dichlorobenzene d) p- Dichlorobenzene

p-isomer is symmetrical hence closely packed due to which it shows higher melting point than o- and m- isomers.

28. Which of the following reactions does not take place?

a)
$$C_2H_5Br+KNO_2\longrightarrow C_2H_5-O-N=O+KBr$$

b)
$$C_2H_5Br + AgNO_2 \longrightarrow C_2H_5 - N \bigcirc^O + AgBr$$
 c) $C_2H_5Br + AgCN \longrightarrow C_2H_5NC + AgBr$

d)
$$C_2H_5Br+KCN\longrightarrow C_2H_5NC+KBr$$

Solution: -

$$C_2H_5Br+KCN\longrightarrow C_2H_5NC+KBr$$

Due to ionic nature, the attack by CN⁻ occurs through C atom and alkyl cyanide is formed.

29. Which of the following pairs of compounds are enantiomers?

Solution: -

Option (a) are the two non-superimposable mirror images of each other so they are enantiomers.

- 30. Reaction of t-butyl bromide with sodium methoxide produces:

 - a) sodium t-butaoxide b) t-butyl methyl ether c) isobutane
- d) isobutylene

Isobutylene is obtained here

Br
$$CH_3$$
 CH_3
 CH_3

- 31. Grignard reagent, a very useful starting compound for a number of organic reactions can be prepared by a) reaction of alkyl halides with a solution of magnesium hydroxide
 - b) reaction of alkyl halides with dry magnesium powder in presence of dry ether
 - c) reaction of MgCl₂ with ether and alcohol
 - d) reaction of alkyl halide with magnesium in presence of alcohol.

Solution: -

$$RX + Mg \stackrel{dry}{\longrightarrow} R - Mg - X$$

- 32. The order of reactivity of following alcohols with halogen acids is
 - (I) CH₃CH₂-CH₂-OH

(II)
$$CH_3CH_2-C\atop CH_3\atop CH_3\atop CH_3$$

$$(III) \ CH_3CH_2 - \overset{ullet}{\overset{ullet}{CH_2}} - OH$$

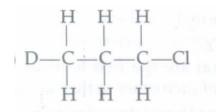
a) (I) > (II) > (III) b) (III) > (II) > (I) c) (II) > (II) d) (I) > (III)
$$d$$

Solution: -

The reactivity of alcohols towards halogen acids decreases in the order: $3^{\circ} > 2^{\circ} > 1$.

- 33. Propene, $CH_3 CH = CH_2$ can be converted into 1-propanol by oxidation. Indicate which set of reagents amongst the following is ideal to affect the above conversion?

 - a) KMnO₄(alkaline) b) Osmium tetroxide (OsO₄/CH₂Cl₂) c) B₂H₆ and alk H₂O₂ d) O₃/Zn


Solution: -

$$\begin{array}{c} {\rm 3CH_3CH} = {\rm CH_2} \stackrel{{\rm B_2H_6}}{\longrightarrow} \left({\rm CH_3-CH_2-CH_2}\right)_3 \, {\rm B} \\ \stackrel{{\rm H_2O_2/OH}^-}{\longrightarrow} {\rm CH_3-CH_2-CH_2-OH} \\ {\rm Propan-l-ol} \end{array}$$

Here, half mol of (B_2H_6) diborane react with propane by Markownikoffs addition it gives tripropyl borane called hydroboration. In presence of H_2O_2 , in basic medium tripropyl borane gives alcohol. Remember that product is Anti-Markownrkoff's rule that is 1-propanol. Reaction is called hydroboration oxidation.

- 34. Which of the following compounds is not chiral?
- a) CH₃CHDCH₂CI b) CH₃CH₂CHDCI c) DCH₂CH₂CI d) CH₃CHCICH₂D

Solution: -

This compound has no chiral C-atom.

- 35. 0.0852 g of an organic halide (A) when dissolved in 2.0 g of camphor, the melting point of the mixture was found to be 167°C. Compound (A) when heated with sodium gives a gas (B). 280 mL of gas (B) at STP weighs 0.375 g. What would be 'A' in the whole process? Kj for camphor = 40, m.pt. of camphor = 179°C.
 - a) C_2H_5Br **b) CH_3I** c) $(CH_3)_2CHI$ d) C_3H_5Br

Solution: -

 \triangle T= 179-167= 12, w=0.0852g, W=2g,K_i=40, molecular weight of (A)

$$=rac{1000 imes K_f imes w}{ riangle T imes W}=rac{1000 imes 40 imes 0.0852}{12 imes 2}=142$$

- (A) undergoes Wurtz reaction to form (B) i.e.
- $(A) \xrightarrow{Na} B) + NaX$
- (B) is an alkane say C_nH_{2n+2}
- : 280 mL of (B) weighs 0.375 g at NTP

∴ 22400 mL of (B) weighs =
$$\frac{0.375 \times 22400}{280}$$

- = 30 q at NTP
- \therefore M.wt. of (B) = 30, 12n + Zn + 2 = 30, n = 2

Thus (B) is ethane and therefore (A) is CH_3X .

The m.wt. of $CH_3X = 142$

At. wt. of X = 127 : X is iodine

Therefore alkyl halide is CH₃I. This reaction is

$$2CH_3 \stackrel{Na}{\longrightarrow} C_2H_6 \ \stackrel{(A)}{\longrightarrow} (B)$$

- 36. Which is the correct increasing order of boiling points of the following compounds?
 - 1-lodobutane, 1-Bromobutane, 1-Chlorobutane, Butane
 - a) Butane < 1-Chlorobutane < 1-Bromobutane < 1-Iodobutane
 - b) 1-lodobutane < 1-Bromobutane < 1-Chlorobutane < Butane
 - c) Butane < 1-Iodobutane <1-Bromobutane < 1-Chlorobutane
 - d) Butane < 1-Chlorobutane < 1-Iodobutane < 1-Bromobutane

Solution: -

For the same alkyl halide, boiling point increases as the mass of halogen increases.

37. **Assertion:** Aryl halides are highly reactive towards nucleophilic substitution reactions.

Reason: In case of haloarenes, halogen atom is attached to sp hybridised carbon atom.

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false.

Solution: -

Aryl halides are less reactive towards nucleophilic substitution reactions as C-X bond aquires a partial double bond character due to resonance. Also halogen atom is attached to Sp² hybridised carbonatom.

- 38. Among the choices of alkyl bromide, the least reactive bromide in S_N2 reaction is
 - a) I-bromopentane b) 2-bromo-2-methylbutane c) I-bromo-3-methylbutan d) I-bromo-z-rnethylbutane.

The reactivity of different alkyl halides towards S_N2 reaction decreases in the order: methyl halides> 1° halides> 2° halides> 3° halides. Since, 2-bromo-2-methylbutane is a tertiary bromide hence it is least reactive among the given.

39. Which of the following reactions is an example of nucleophilic substitution reaction?

a) $2RX + 2Na \rightarrow R-R + 2NaX$ b) $RX + H_2 \rightarrow RH + HX$ c) $RX + Mg \rightarrow RMgX$ d) $RX + KOH \rightarrow ROH + KX$

Solution: -

 $RX + KOH \rightarrow ROH + KX$ is an example of nucleophilic substitution reaction .

Here OH nucleophile substitute X-.

40. Which of the following molecules has highest dipole moment?

a) CH₃CI b) CH₂Cl₂ c) CHCl₃ d) CCl₄

Solution: -

Order of dipole moment is: CH₃CI > CH₂Cl₂ > CHCl₃ > CCl₄

- 41. Bottles containing C₆H₅I and C₆H₅CH₂I lost their original labels. They were labelled A and B for testing. A and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was made acidic with dilute HNO₃ and some AgNO₃ solution added. Solution B gave a yellow precipitate. Which one of the following statements is true for the experiment?
 - a) Addition of HNO₃ was unnecessary **b) A was C₆H₅I** c) A was C₆H₅CH₂I d) B was C₆H₈I

Solution: -

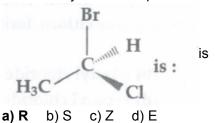
Since B gives yellow ppt. with AgNO₃/HNO₃, B must be C₆H₅CH₂I and hence A is C₆H₅I.

42. Match the column I with column II and mark the appropriate choice.

	Column I		Column II
(A)	$CH_{3}(CH_{2})_{3}OH \xrightarrow[H_{2}SO_{4},\Delta]{NaBr}$	(i)	CH ₃ CH(Br)(CH ₂) ₂ CH ₃
(B)	$(CH_3)_3COH \xrightarrow[room\ temp]{Conc.HCl}$		CH ₃ CH ₂ CH ₂ CI
(C)	$CH_3CH(OH)(CH_2)_2CH_3 \stackrel{PBr_3}{\longrightarrow}$	(iii)	(CH ₃)CCI
(D)	$CH_3CH_2CH_2OH \stackrel{SOCl_2}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-}$	(iv)	CH ₃ (CH _z) ₃ Br

- $\textbf{a) (A)} \rightarrow \textbf{(iv), (B)} \rightarrow \textbf{(iii), (C)} \rightarrow \textbf{(i), (D)} \rightarrow \textbf{(ii)} \quad \textbf{b) (A)} \rightarrow \textbf{(iv), (B)} \rightarrow \textbf{(iii), (C)} \rightarrow \textbf{(ii), (D)} \rightarrow \textbf{(i)}$
- c) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii) d) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i)
- 43. **Assertion:** Replacement of -Cl group by -OH in chlorobenzene is easier if nitro group is present in the ring.

Reason: Nitro group leads to strengthening of the C-Cl bond in chlorobenzene.


- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false. d) If both assertion and reason are false

Solution: -

Nitro group is an electron withdrawing group which leads to weakening of C-Cl bond, hence making it easier to replace the -Cl group.

- 44. Which of the following statements is not correct about S_N2 reactions of alkyl halides?
 - a) Nucleophile attacks the carbon from the side opposite to where the leaving group is attached.
 - b) The bond formation and bond breaking take place in one step

- c) The rate of reaction depends upon the concentration of nucleophile
- d) S_N2 mechanism is predominant in tertiary alkyl halides
- 45. The chirality of the compound:

- 46. Arrange the following compounds in decreasing order of their boiling points.
 - (i) CH₃Br
 - (ii) CH₃CH₂Br
 - (iii) CH₃CH₂CH₂Br
 - (iv) CH₃CH₂CH₂CH₂Br
 - a) (i) > (ii) > (iii) > (iv) b) (iv) > (lii) > (i) > (i) > (ii) > (ii) > (ii) > (iv) d) (iii) > (iv) > (i) > (ii)
- 47. **Assertion:** S_N2 reaction proceeds with racemisation while S_N1 reaction proceeds with complete stereochemical inversion.

Reason: $S_N 2$ is two steps reaction while S_N is one step reaction.

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false
- 48. Arrange the following alkyl halides in order of dehydrohalogenation; C₂H₅I, C₂H₅CI, C₂H₅Br, C₂H₅F
 - a) $C_2H_5:F > C_2H_5CI > C_2H_5Br > C_2H_5I$ b) $C_2H_5I > C_2H_5Br > C_2H_5CI > C_2H_5F$
 - c) $C_2H_5I > C_2H_5CI > C_2H_5Br > C_2H_5F$ d) $C_2H_5F > C_2H_5I > C_2H_5Br > C_2H_5CI$
- 49. Benzene reacts with n-propyl chloride in the presence of anhydrous AlCl₃ to give:
 - a) 3-propyl-l-chlorobenzene b) n-propyl benzene c) no reaction d) isopropyl benzene.

Solution: -

50. When chlorine is passed through propene at 400°C, which of the following is formed?

a) PVC b) Allyl chloride c) Nickel chloride d) 1,2-dichloro ethane

Solution: -

When chlorine gas is reacted with propene at high temperature $(400^{\circ} C)$, then substitution occurs in place of addition reaction. Hence, allyl chloride is formed.

$$\begin{array}{c} \text{CH}_3-\text{CH}=\text{CH}_2+\text{Cl}_2 \xrightarrow{400^{\circ}\text{C}} \\ \text{(Allylic substitution)} \\ \text{CH}_2-\text{CH} -\text{CH}_2+\text{HCl} \\ \text{Cl} \end{array}$$